AI Chat Platform
A sophisticated real-time chat application that combines the power of AI with human collaboration. This project showcases modern full-stack development practices and cutting-edge technologies.
Key Features
Real-time Communication
The platform utilizes WebSocket connections to enable instant message delivery and real-time updates across all connected clients. This ensures a smooth, collaborative experience where users can see each other's messages and AI responses immediately.
// websocket.ts
class ChatWebSocket {
private ws: WebSocket;
constructor(roomId: string) {
this.ws = new WebSocket(`wss://api.example.com/chat/${roomId}`);
this.ws.onmessage = this.handleMessage;
}
private handleMessage = (event: MessageEvent) => {
const data = JSON.parse(event.data);
// Handle different message types
switch (data.type) {
case "NEW_MESSAGE":
this.emit("newMessage", data.message);
break;
case "USER_JOINED":
this.emit("userJoined", data.user);
break;
}
};
}
AI Integration
The application integrates with OpenAI's GPT models to provide intelligent responses and assist users in their conversations. The AI can understand context, provide relevant information, and even help moderate discussions.
// ai-service.ts
import { OpenAI } from "openai";
export async function generateAIResponse(
messages: Message[],
context: ConversationContext
): Promise<string> {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4",
messages: [
{ role: "system", content: context.systemPrompt },
...messages.map((m) => ({
role: m.role as "user" | "assistant",
content: m.content,
})),
],
temperature: 0.7,
max_tokens: 500,
});
return completion.choices[0].message.content;
}
Database Architecture
The project uses Prisma with PostgreSQL to manage a complex data model that handles users, conversations, messages, and AI interactions. This ensures data consistency and enables powerful querying capabilities.
// schema.prisma
model User {
id String @id @default(cuid())
name String
email String @unique
rooms Room[]
messages Message[]
createdAt DateTime @default(now())
}
model Room {
id String @id @default(cuid())
name String
users User[]
messages Message[]
settings Json?
createdAt DateTime @default(now())
}
model Message {
id String @id @default(cuid())
content String
room Room @relation(fields: [roomId], references: [id])
roomId String
author User @relation(fields: [authorId], references: [id])
authorId String
createdAt DateTime @default(now())
}
Technical Challenges
One of the main challenges was implementing efficient real-time updates while maintaining data consistency across multiple clients. This was solved by:
- Using WebSocket connections for instant updates
- Implementing an optimistic UI update pattern
- Creating a robust error handling and retry mechanism
- Utilizing Redis for temporary state management
Performance Optimization
The application implements several performance optimizations:
- Message virtualization for handling large chat histories
- Incremental static regeneration for static content
- Efficient database indexing and query optimization
- Client-side caching strategies
- Image optimization and lazy loading
Deployment Architecture
The platform is deployed using a modern cloud infrastructure:
graph TD
A[Client] -->|WebSocket| B[API Gateway]
B --> C[Chat Service]
B --> D[AI Service]
C --> E[(PostgreSQL)]
C --> F[(Redis)]
D --> G[OpenAI API]
Conclusion
This project demonstrates the effective combination of modern web technologies to create a robust, scalable chat platform. The integration of AI capabilities enhances user interaction while maintaining high performance and reliability.