AI Chat Platform with Real-time Collaboration

Apr 21, 2024

AI Chat Platform

Well

A sophisticated real-time chat application that combines the power of AI with human collaboration. This project showcases modern full-stack development practices and cutting-edge technologies.

Key Features

Real-time Communication

The platform utilizes WebSocket connections to enable instant message delivery and real-time updates across all connected clients. This ensures a smooth, collaborative experience where users can see each other's messages and AI responses immediately.

// websocket.ts
class ChatWebSocket {
  private ws: WebSocket;

  constructor(roomId: string) {
    this.ws = new WebSocket(`wss://api.example.com/chat/${roomId}`);
    this.ws.onmessage = this.handleMessage;
  }

  private handleMessage = (event: MessageEvent) => {
    const data = JSON.parse(event.data);
    // Handle different message types
    switch (data.type) {
      case "NEW_MESSAGE":
        this.emit("newMessage", data.message);
        break;
      case "USER_JOINED":
        this.emit("userJoined", data.user);
        break;
    }
  };
}

AI Integration

The application integrates with OpenAI's GPT models to provide intelligent responses and assist users in their conversations. The AI can understand context, provide relevant information, and even help moderate discussions.

// ai-service.ts
import { OpenAI } from "openai";

export async function generateAIResponse(
  messages: Message[],
  context: ConversationContext
): Promise<string> {
  const openai = new OpenAI();

  const completion = await openai.chat.completions.create({
    model: "gpt-4",
    messages: [
      { role: "system", content: context.systemPrompt },
      ...messages.map((m) => ({
        role: m.role as "user" | "assistant",
        content: m.content,
      })),
    ],
    temperature: 0.7,
    max_tokens: 500,
  });

  return completion.choices[0].message.content;
}

Database Architecture

The project uses Prisma with PostgreSQL to manage a complex data model that handles users, conversations, messages, and AI interactions. This ensures data consistency and enables powerful querying capabilities.

// schema.prisma
model User {
  id        String   @id @default(cuid())
  name      String
  email     String   @unique
  rooms     Room[]
  messages  Message[]
  createdAt DateTime @default(now())
}

model Room {
  id        String    @id @default(cuid())
  name      String
  users     User[]
  messages  Message[]
  settings  Json?
  createdAt DateTime  @default(now())
}

model Message {
  id        String   @id @default(cuid())
  content   String
  room      Room     @relation(fields: [roomId], references: [id])
  roomId    String
  author    User     @relation(fields: [authorId], references: [id])
  authorId  String
  createdAt DateTime @default(now())
}

Technical Challenges

One of the main challenges was implementing efficient real-time updates while maintaining data consistency across multiple clients. This was solved by:

  1. Using WebSocket connections for instant updates
  2. Implementing an optimistic UI update pattern
  3. Creating a robust error handling and retry mechanism
  4. Utilizing Redis for temporary state management

Performance Optimization

The application implements several performance optimizations:

  • Message virtualization for handling large chat histories
  • Incremental static regeneration for static content
  • Efficient database indexing and query optimization
  • Client-side caching strategies
  • Image optimization and lazy loading

Deployment Architecture

The platform is deployed using a modern cloud infrastructure:

graph TD
    A[Client] -->|WebSocket| B[API Gateway]
    B --> C[Chat Service]
    B --> D[AI Service]
    C --> E[(PostgreSQL)]
    C --> F[(Redis)]
    D --> G[OpenAI API]

Conclusion

This project demonstrates the effective combination of modern web technologies to create a robust, scalable chat platform. The integration of AI capabilities enhances user interaction while maintaining high performance and reliability.